Differentia	I Equations
Equation	Method
$\frac{dy}{dx} = f(x)$	$y(x) = \int f(x)dx + C$
$\frac{dy}{dx} = H(x, y) = f(x)g(y)$	$\int \frac{1}{g(y)} dy = \int f(x) dx$
$\frac{dy}{dx} + P(x)y = Q(x)$	Take $I = e^{\int P(x)dx}$, then multiply the differential equation by I and write it down in the form $D_x \left[y(x) \cdot e^{\int P(x)dx} \right] = Q(x)e^{\int P(x)dx}$ then integrate
Bernoulli's Equation (E):	Substitute $u = y^{1-n}$ then differentiate y in
$\frac{dy}{dx} + h(x)y = f(x)y^n$ with $n \ge 2$	terms of u and replace y and y' in (E) to get
dx dx dx dx dx	(E'): $\frac{du}{dx} + P(x)u = Q(x)$
If differential equation can be written in the	Substitute $y = ux \implies dy = udx + xdu$ or $x = yv$
form $\frac{dy}{dt} = F\left(\frac{y}{2}\right)$	\Rightarrow dx = vdy + ydv, then transform the
$dx = \begin{pmatrix} x \end{pmatrix}$	resulting equation into a separable equation
If the differential equation (E): M(x, y)dx + N(x, y)dy = 0 is exact	Take $M = \frac{\partial F}{\partial x}$ and $N = \frac{\partial F}{\partial y}$. Then do the
differential equation i.e. $\frac{\partial M}{\partial u} = \frac{\partial N}{\partial u}$	following
Note: If it is written as $G(x, y)dx = H(x, y)dy$ rewrite it as $G(x, y)dx - H(x, y)dy = 0$ same as $M(x, y)dx + N(x, y)dy = 0$ where M(x, y) = G(x, y) and $N(x, y) = -H(x, y)If the differential equation (E):$	1. $F = \int M(xy)dx + g(y)$ 2. $\frac{\partial F}{\partial y} = \left(\frac{\partial}{\partial y}\int M(x, y)dx\right) + g'(y)$ and evaluate $g'(y)$ 3. evaluate $g(y)$ and plug it in $F = \int M(xy)dx + g(y)$ 4. The implicit solution is $F = c$ M = N
M(x, y)dx + N(x, y)dy = 0 is not exact,	1. If $\frac{M_y - N_x}{N}$ is a function of x alone,
turn it into exact by multiplying it with a specific integrating factor	N then multiply (E) by $\mu(x) = e^{\int \frac{M_y - N_x}{N} dx}$ 2. If $\frac{N_x - M_y}{M}$ is a function of y alone, then multiply (E) by $\mu(y) = e^{\int \frac{N_x - M_y}{M} dy}$
Reduction of order can be used to find the	$v_2(x) = u(x)v_1(x)$ can be obtained directly by:
general solution of a nonhomogeneous DE	$-\int P(x)dx$
$a_2(x)y''+a_1(x)y'+a_0(x)y = g(x)$ whenever a solution y_1 is known	$y_2 = y_1(x) \int \frac{e^{-y_1}}{y_1^2(x)} dx$

Differential Equations

Homogeneous equation of the form	Find the roots of characteristic equation
$a_n y^{(n)} + a_{n-1} y^{(n-1)} + \dots + a_2 y'' + a_1 y' + a_0 y = 0$	• If roots are distinct and real then the
with constant coefficients	solution is
	$y = c_1 e^{r_1 x} + c_2 e^{r_2 x} + c_3 e^{r_3 x} + \dots + c_n e^{r_n x}$
	• If roots are repeated and real then the solution is
	$y = (c_1 + c_2 x + c_3 x^2 \cdots c_n x^{n-1})e^{rx}$
	• If roots are complex i.e.
	$r_1 = a + ib$, $r_2 = a - ib$
	Then the solution is
	$y = e^{ax} (c_1 \cos bx + c_2 \sin bx)$
Nonhomogeneous equation of the form	The solution has the form $y = y_c + y_p$ where
$a_n y^{(n)} + a_{n-1} y^{(n-1)} + \dots + a_2 y'' + a_1 y' + a_0 y =$	y_c is the solution of associated homogeneous
f(x)	equation. Find y_p by method of variation of
	parameters or undetermined coefficients
To solve $a_2 y'' + a_1 y' + a_0 y = g(x)$ using	To find y_p , integrate $u'_1 = W_1 / W$ and
variation of parameters divide by a_2 to get	$u'_2 = W_2 / W$ to get $u_1 \& u_2 \Rightarrow y_n = u_1 y_1 + u_2 y_2$
the 2^{nd} order DE $y'' + Py' + Qy = f(x)$ and	where W is the Wronskian $W(y_1(x), y_2(x))$,
find $y_c = c_1 y_1 + c_2 y_2$	$W_1 = -y_2 f(x)$, and $W_2 = y_1 f(x)$
f(x)	Forms of y_p
1. Any constant	1. <i>A</i>
2. $5x + 7$	2. $Ax + B$
3. $3x^2 - 2$	$3. Ax^2 + Bx + C$
4. $x^3 - x + 1$	$4. Ax^3 + Bx^2 + Cx + D$
5. $\sin 4x$	5. $A\cos 4x + B\sin 4x$
$\begin{array}{c} 0. \cos 4x \\ 7 5x \end{array}$	$6. A\cos 4x + B\sin 4x$
$1. e^{-5x}$	7. Ae^{3x}
8. $(9x-2)e^{-x}$	8. $(Ax+B)e^{5x}$
9. $x^2 e^{3x}$	9. $(Ax^2 + Bx + C)e^{5x}$
10. mix	10. <i>mix</i>
Cauchy-Euler equation of the form	Find the roots of auxiliary equation
$a_{n}x^{n}\frac{d^{n}y}{dt^{n}y} + a_{n}x^{n-1}\frac{d^{n-1}y}{dt^{n-1}y} + \dots + a_{n}x\frac{dy}{dt^{n-1}y} + \dots$	• If roots m_1 and m_2 are real and distinct
$dx^n dx^{n-1} dx^{n-1} dx$	then the solution is $y = c_1 x^{m_1} + c_2 x^{m_2}$
$a_0 y = f(x)$	• If the roots are real and equal i.e.
	$m_1 = m_2 = m$, then the solution is
	$y = c_1 x^m + c_2 x^m \ln x$
	• If the roots are the conjugate pair
	$m_1 = \alpha + i\beta$ and $m_2 = \alpha - i\beta$ then
	$y = x^{\alpha} [c_1 \cos(\beta \ln x) + c_2 \sin(\beta \ln x)]$

Cauchy-Euler \rightarrow DE with cte coefficients	Substitute $t = \ln x \Rightarrow x = e^t$ differentiate w.r.t. t
When a linear DE has variable coefficients, find a solution in the form of infinite series	Use Power series method where $y = \sum_{n=0}^{\infty} C_n x^n$
Definition of Laplace of f(t)	$L\{f(t)\} = \int_{0}^{\infty} e^{-st} f(t) dt = \mathbf{F}(\mathbf{s})$
Laplace of a power function	$L\{t^n\} = \frac{\Gamma(n+1)}{s^{n+1}}$
Laplace of the function, whose denominator can be written in factors.	Use partial fractions
Translation Theorem	$L\{e^{at}f(t)\} = F(s-a)$
	or $L^{-1}{F(s-a)} = e^{at}f(t)$
Convolution of two functions	$(f^*g)(t) = \int_0^t f(\tau)g(t-\tau)d\tau$
Convolution Theorem	$L\{f(t) * g(t)\} = L\{f(t).L\{g(t)\}\}$
	or $L^{-1}(F(s).G(s)) = f(t) * g(t)$
Differentiation of Transforms	$L\{-t.f(t)\} = F'(s)$
Integration of transforms	$L\left\{\frac{f(t)}{t}\right\} = \int_{s}^{\infty} f(\sigma)d\sigma$ or $f(t) = tL^{-1}\left\{\int_{s}^{\infty} f(\sigma)d\sigma\right\}$
To solve the systems of first order linear differential equations	Write down in matrix form and use eigen value method
Eigen values	To find eigen values solve det $[A - \lambda I] = 0$
Eigen vectors	To find an eigen vector, find V such that $[A - \lambda I]V = 0$
If eigen values are distinct, then the solution is	$X(t) = c_1 V_1 e^{\lambda_1 t} + c_2 V_2 e^{\lambda_2 t} + \cdots$
If eigen values are repeated and you can't find linearly independent eigen vectors	Find W such that $[A - \lambda I]^2 W = 0$
	$if [A - \lambda I]^2 = 0 \text{ then take } W = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$
	Find V such that $[A - \lambda I]W = V$
	The solution is $X = c_1 V e^{\lambda t} + c_2 (Vt + W) e^{\lambda t}$
If the eigen values are complex $\lambda = a \pm ib$	Find the eigen vector V for $a - ib$
	Take $X = Ve^{a-bi}$ then separate its real and
	Imaginary parts
	and imaginary parts