Differential Equations

Equation	Method
$\frac{d y}{d x}=f(x)$	$y(x)=\int f(x) d x+C$
$\frac{d y}{d x}=H(x, y)=f(x) g(y)$	$\int \frac{1}{g(y)} d y=\int f(x) d x$
$\frac{d y}{d x}+P(x) y=Q(x)$	Take $I=e^{\int P(x) d x}$, then multiply the differential equation by I and write it down in the form $D_{x}\left[y(x) \cdot e^{\int P(x) d x}\right]=Q(x) e^{\int P(x) d x}$ then integrate
Bernoulli's Equation (E): $\frac{d y}{d x}+h(x) y=f(x) y^{n} \text { with } n \geq 2$	Substitute $u=y^{1-n}$ then differentiate y in terms of u and replace y and y^{\prime} in (E) to get (${ }^{\prime}$): $\frac{d u}{d x}+P(x) u=Q(x)$
If differential equation can be written in the form $\frac{d y}{d x}=F\left(\frac{y}{x}\right)$	Substitute $\mathrm{y}=\mathrm{ux} \Rightarrow d y=u d x+x d u$ or $\mathrm{x}=\mathrm{yv}$ $\Rightarrow d x=v d y+y d v$, then transform the resulting equation into a separable equation
If the differential equation (E): $M(x, y) d x+N(x, y) d y=0$ is exact differential equation i.e. $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$	Take $M=\frac{\partial F}{\partial x} \quad$ and $\quad N=\frac{\partial F}{\partial y}$. Then do the following 1. $F=\int M(x y) d x+g(y)$
Note: If it is written as $G(x, y) d x=H(x, y) d y$ rewrite it as $G(x, y) d x-H(x, y) d y=0$ same as $M(x, y) d x+N(x, y) d y=0$ where $M(x, y)=G(x, y)$ and $N(x, y)=-H(x, y)$	2. $\frac{\partial F}{\partial y}=\left(\frac{\partial}{\partial y} \int M(x, y) d x\right)+g^{\prime}(y)$ and evaluate $g^{\prime}(y)$ 3. evaluate $g(y)$ and plug it in $F=\int M(x y) d x+g(y)$ 4. The implicit solution is $\mathrm{F}=\mathrm{c}$
If the differential equation (E): $M(x, y) d x+N(x, y) d y=0$ is not exact, turn it into exact by multiplying it with a specific integrating factor	1. If $\frac{M_{y}-N_{x}}{N}$ is a function of x alone, then multiply (E) by $\mu(x)=e^{\int \frac{M_{y}-N_{x}}{N} d x}$ 2. If $\frac{N_{x}-M_{y}}{M}$ is a function of y alone, then multiply (E) by $\mu(y)=e^{\int \frac{N_{x}-M_{y}}{M} d y}$
Reduction of order can be used to find the general solution of a nonhomogeneous DE $a_{2}(x) y^{\prime \prime}+a_{1}(x) y^{\prime}+a_{0}(x) y=g(x)$ whenever a solution y_{1} is known	$\begin{aligned} & y_{2}(x)=u(x) y_{1}(x) \text { can be obtained directly by: } \\ & y_{2}=y_{1}(x) \int \frac{e^{-\int P(x) d x}}{y_{1}^{2}(x)} d x \end{aligned}$

Homogeneous equation of the form $a_{n} y^{(n)}+a_{n-1} y^{(n-1)}+\cdots a_{2} y^{\prime \prime}+a_{1} y^{\prime}+a_{0} y=0$ with constant coefficients	Find the roots of characteristic equation - If roots are distinct and real then the solution is $y=c_{1} e^{r_{1} x}+c_{2} e^{r_{2} x}+c_{3} e^{r_{3} x}+\cdots c_{n} e^{r_{n} x}$ - If roots are repeated and real then the solution is $y=\left(c_{1}+c_{2} x+c_{3} x^{2} \cdots c_{n} x^{n-1}\right) e^{r x}$ - If roots are complex i.e. $r_{1}=a+i b, \quad r_{2}=a-i b$ Then the solution is $y=e^{a x}\left(c_{1} \cos b x+c_{2} \sin b x\right)$
Nonhomogeneous equation of the form $\begin{aligned} & a_{n} y^{(n)}+a_{n-1} y^{(n-1)}+\cdots a_{2} y^{\prime \prime}+a_{1} y^{\prime}+a_{0} y= \\ & f(x) \end{aligned}$	The solution has the form $y=y_{c}+y_{p}$ where y_{c} is the solution of associated homogeneous equation. Find y_{p} by method of variation of parameters or undetermined coefficients
To solve $a_{2} y^{\prime \prime}+a_{1} y^{\prime}+a_{0} y=g(x)$ using variation of parameters divide by a_{2} to get the $2^{\text {nd }}$ order $\mathrm{DE} y^{\prime \prime}+P y^{\prime}+Q y=f(x)$ and find $y_{c}=c_{1} y_{1}+c_{2} y_{2}$	To find y_{p}, integrate $u_{1}^{\prime}=W_{1} / W$ and $u_{2}^{\prime}=W_{2} / W$ to get $u_{1} \& u_{2} \Rightarrow y_{p}=u_{1} y_{1}+u_{2} y_{2}$ where W is the Wronskian $W\left(y_{1}(x), y_{2}(x)\right)$, $W_{1}=-y_{2} f(x)$, and $W_{2}=y_{1} f(x)$
$f(x)$ 1. Any constant 2. $5 x+7$ 3. $3 x^{2}-2$ 4. $x^{3}-x+1$ 5. $\sin 4 x$ 6. $\cos 4 x$ 7. $e^{5 x}$ 8. $(9 x-2) e^{5 x}$ 9. $x^{2} e^{5 x}$ 10. mix	Forms of y_{p} 1. A 2. $A x+B$ 3. $A x^{2}+B x+C$ 4. $A x^{3}+B x^{2}+C x+D$ 5. $A \cos 4 x+B \sin 4 x$ 6. $A \cos 4 x+B \sin 4 x$ 7. $A e^{5 x}$ 8. $(A x+B) e^{5 x}$ 9. $\left(A x^{2}+B x+C\right) e^{5 x}$ 10. mix
Cauchy-Euler equation of the form $\begin{aligned} & a_{n} x^{n} \frac{d^{n} y}{d x^{n}}+a_{n-1} x^{n-1} \frac{d^{n-1} y}{d x^{n-1}}+\cdots+a_{1} x \frac{d y}{d x}+ \\ & a_{0} y=f(x) \end{aligned}$	Find the roots of auxiliary equation - If roots m_{1} and m_{2} are real and distinct then the solution is $y=c_{1} x^{m_{1}}+c_{2} x^{m_{2}}$ - If the roots are real and equal i.e. $m_{1}=m_{2}=m$, then the solution is $y=c_{1} x^{m}+c_{2} x^{m} \ln x$ - If the roots are the conjugate pair $m_{1}=\alpha+i \beta$ and $m_{2}=\alpha-i \beta$ then $y=x^{\alpha}\left[c_{1} \cos (\beta \ln x)+c_{2} \sin (\beta \ln x)\right]$

Cauchy-Euler $\rightarrow \mathrm{DE}$ with cte coefficients	Substitute $t=\ln x \Rightarrow x=e^{t}$ differentiate w.r.t. t
When a linear DE has variable coefficients, find a solution in the form of infinite series	Use Power series method where $y=\sum_{n=0}^{\infty} C_{n} x^{n}$
Definition of Laplace of $\mathrm{f}(\mathrm{t})$	$L\{f(t)\}=\int_{0}^{\infty} e^{-s t} f(t) d t=\mathrm{F}(\mathrm{s})$
Laplace of a power function	$L\left\{t^{n}\right\}=\frac{\Gamma(n+1)}{s^{n+1}}$
Laplace of the function, whose denominator can be written in factors.	Use partial fractions
Translation Theorem	$L\left\{e^{a t} f(t)\right\}=F(s-a)$ or $L^{-1}\{F(s-a)\}=e^{a t} f(t)$
Convolution of two functions	$\left(f^{*} g\right)(t)=\int_{0}^{t} f(\tau) g(t-\tau) d \tau$
Convolution Theorem	$L\{f(t) * g(t)\}=L\{f(t) \cdot L\{g(t)\}$ or $L^{-1}(F(s) . G(s)\}=f(t) * g(t)$
Differentiation of Transforms	$L\{-t . f(t)\}=F^{\prime}(s)$
Integration of transforms	$L\left\{\frac{f(t)}{t}\right\}=\int_{s}^{\infty} f(\sigma) d \sigma$

